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Abstract

Natural convection in air-filled, 2-D rectangular enclosures heated from below and cooled from above is studied numerically under the
assumption of adiabatic sidewalls. A computational model based on the SIMPLE-C algorithm is used for solving the mass, momentum, and
energy transfer governing equations. Simulations are performed for different values of the height-to-width aspect ratio of the enclosure in
the range X A < 6, by progressively increasing and successively decreasing the Rayleigh number in the Pagdeat02 x 10°. After
the departure from motionless conduction takes place, the following flow-pattern evolution is detected: one-celbsteadgell steady
— two-cell periodic— one-to-three-cell periodie> three-cell periodic. At each bifurcation, either abrupt or smooth changes in the Nusselt
number are found to occur, according to whether the flow-transition is either sudden or more gradual. Hysteresis phenomena occurrence i
documented. The effects of tilting the enclosure upon the stability of the different flow structures are also analysed.
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1. Introduction turning into quasi-periodic and eventually chaotic motion.
The onset of chaos may then be followed by windows of
Rayleigh—Bénard convection in confined enclosures hasperiodicity, which emphasize the surprisingly complicated
attracted considerable attention due to its practical relevancedynamic behavior of Rayleigh—Bénard systems. However,
to many engineering and science applications, and to itsdifferent routes to chaos and turbulence may be followed,
theoretical interest as a convenient vehicle for the study according to the fact that bifurcation sequences are strong
of the dynamic behavior of non-linear systems. In partic- function of the thermal hystory of the system and of the
ular, much effort has been dedicated to investigate both step change in the Rayleigh number (see Gollub and Benson
flow-instabilities and flow-transitions or bifurcations, i.e., [2], Libchaber et al. [3], and Mukutmoni and Yang [4—6]).
changes in the spatio-temporal flow patterns with varying a |n addition, hysteresis effects were also reported (see, e.g.,
control parameter, usually assumed to be the Rayleigh num-|eith [7]), thus confirming that the Rayleigh-Bénard prob-
ber of the enclosure. lem, due to its non-linearity, is a degenerate problem, i.e.,
A general well-known result obtained by many research- for the same set of governing parameters multiple solutions,
ers is that a first bifurcation from motionless conduction to each Strong|y dependent on the initial COﬂditiOﬂS, are pos-
steady-state convection occurs as the Rayleigh number is insjple. Flow-pattern evolutions of the same kind of those
creased beyond a critical value which depends on the aspecfiescribed above were detected also when the aspect ratio
ratio of the enclosure (see, e.g., Raithby and Holland [1]). As of the enclosure was assumed as control parameter instead
the Rayleigh number is further increased, motion becomesof the Rayleigh number (see Hernandez and Frederick [8]).
unstable and subsequent flow-transitions lead to an increaspetajled surveys of Rayleigh—Bénard convection, as well as
ing spatio-temporal complexity which ultimately results in - reviews on the several studies conducted, are widely avail-
turbulence. According to a typical bifurcation sequence, gpje in the open literature (see, e.g., Yang [9], Koschmieder
steady-state convection becomes at first oscillatory, then[lo]' Getling [11], and Gelfgat [12]).
Despite the enormous amount of experimental, theoreti-
~* Corresponding author. cal, and numerical studies performed on this topic, it seems
E-mail address: massimo.corcione@uniromad.it (M. Corcione). worthwhile noticing that most of the work done deals mainly
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Nomenclature

A height-to-width aspect ratio of the enclosure, v vertical velocity component ........... a7t
=H/L X dimensionless horizontal coordinate

g gravitational acceleration.............. ST Y dimensionless vertical coordinate

H height of the enclosure.................... m x horizontal coordinate ..................... m

h average coefficient of convection . Mv2.K-1 y vertical coordinate........................ m

k thermal conductivity of the fluid.. Wh—1.K—1 Greek symbols

L length of the enclosure.................... m

NU average Nusselt numbe, i H/ k o thermal diffusivity of the fluid .. .. .... ths1

P dimensionless pressure B coefficient of volumetric thermal expansion of

p PIESSUME . .. .ottt e e e et Pa thefluid................... RREREEREERER ®

Pr Prandtl number= v/« v kinematic viscosity of the fluid. . . ... .. el

0 heattransferrate......................... w ¢ dimensionless temperature

Ra Rayleigh number based on the height of the P density of the fluid .................. kg2
cavity, = gB(Th — To) H3/av T d!mens!onless time _

T period of oscillation ....................... s v dimensionless stream function

T temperature . ... K  Subscripts

To reference temperature..................... K av average

t time ... S ¢ cold, referred to the top wall

U dimensionless horizontal velocity component h hot, referred to the bottom wall

1% dimensionless vertical velocity component max maximum value

u horizontal velocity component......... et 0 evaluated at the reference temperature

with cavities extensive in the horizontal direction, i.e., cav- 2. Physical and mathematical formulation
ities whose height is significantly smaller than the other
dimensions. In contrast, only few studies were carried outfor ~ An air-filled rectangular enclosure of heighf and
aspect ratios close or equal to unity (see Pallares et al. [13,width L is considered. The coordinate system is defined so
14]), whilst a considerably smaller attention has been dedi- that thex-axis is horizontal, whilst they-axis is vertical
cated to tall cavities, i.e., cavities heated from below which and pointing upwards in the direction opposite to gravity.
extend in the vertical direction. Constant uniform temperatur@g and7¢ (with 7, > T¢) are

In this framework, aim of the present paper is to carry out imposed at the bottom and top walls, respectively. The right
a first-approach numerical analysis of the Rayleigh—Bénard and left sidewalls are assumed adiabatic. The geometry of
convection in tall, two-dimensional enclosures filled with the enclosure is depicted in Fig. 1(a), where the coordinate
air. Indeed, the analysis performed here must be intended a$ystem and the thermal state of the boundary walls are also
a preliminar study of the dynamic behavior of real slender rePresented.
cavities heated from below, being reasonable to expect that
the thermal convection inside tall three-dimensional cavities T
may also be dominated by three-dimensional effects, as in
the real bottom-heated horizontal enclosures (where, besides’
the quasi two-dimensional transverse and longitudinal rolls,
the formation of typically three-dimensional cross-roll and
soft-roll flow structures may occur).

The analysis is conducted under the assumption of
laminar flow, for different values of both the height-to-width v
aspect ratio of the enclosure in the range between 2 and 61 ‘ u lg
and the Rayleigh number based on the height of the cavity
in the range between $@nd 2x 10°. Major concern of the
work is to study the evolution of the heat transfer features %y
of the enclosure, to document and discuss the bifurcations X T,
that occur as the Rayleigh number is progressively either . (2) (b)
increased or decreased within its range of variability, and to
investigate the occurrence of hysteresis phenomena. Fig. 1. Sketch of the geometry, coordinate system and discretization grid.
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The flow is considered to be two-dimensional and lami- coupling is handled by using the SIMPLE-C algorithm by
nar. The fluid is assumed to be incompressible, with constantVan Doormaal and Raithby [15], which is essentially a more
physical properties and negligible viscous dissipation. The implicit variant of the SIMPLE algorithm by Patankar and
buoyancy effects upon momentum transfer are taken into ac-Spalding [16]. The convective fluxes across the surfaces

count through the Boussinesq approximation.

of the control volumes are evaluated by using the power-

Once the above assumptions are employed in the conserfaw discretization scheme recommended by Patankar [17].
vation equations of mass, momentum, and energy, and theA second-order backward scheme is then used for time

following dimensionless variables are introduced:

stepping. Starting from specified initial values of the in-
dependent variables, i.e., specified initial temperature and

X= % Y= % T= (Héw 1) velocity fields, at each time step the discretized governing
equations are solved iteratively through a line-by-line appli-
" y=_Y . pPtrsy cation of the Thomas algorithm. Under-relaxation is used
(v/H) (v/H) p(v/H)? to ensure the convergence of the iterative procedure. De-
_(I'-Ty . _ tails on the SIMPLE procedure and on the discretization
o= (Th — Te) with To = (T + Tc) /2 ) of the convective fluxes may be found in Patankar [17]. In
the following set of governing equations is obtained: addition, studies on the comparative performance of differ-
ent discretization schemes for the evaluation of the interface
U n v 0 4) convective fluxes, as well as studies on enhanced variants of
X 9y the basic SIMPLE algorithm, are referenced and discussed
oU oU U P 92U 92U in a general review paper by Patankar [18].
9t + Ua_X + Va_y T 9x <W + W) () The computational spatial domain is covered with a non-
equidistant grid, having a concentration of grid lines near the

V.V 3V
—+U—+V—

+ four walls of the cavity, and a uniform spacing throughout
T X aY

the remainder interior of the cavity. Time discretization is

__op + (82_‘/ + 82_V> Ra (6) chosen uniform. Within each time step, the spatial solution
Y X2 9r? Pr is considered to be fully converged when the maximum
90 90 90 179820 9% absolute values of both the mass source and the percent
9T + Uﬁ + Vﬁ ~pr <m + W) (7) changes of the independent variables at any grid-node from

iteration to iteration are smaller than prescribed values, i.e.,
10~4 and 10°°, respectively. Time-integration is stopped
based on the height of the enclosure &rd= v/« is the once an asymptotic solution, either stationary or periodic,
Prandtl number, set to 0.71. is reached. This means that the simulation procedure is
The thermal boundary conditions assumed at the walls halted when the percent difference between the incoming
are: (a)0 = +0.5 at the bottom wally = 0; (b) 8 = —0.5 and outgoing heat transfer rates at the bottom and top walls,
at the top wall,Y = 1; and (c)06/0X =0 at the left and  as well as the percent changes of the time-derivatives of
right sidewalls,X = 0 and X = 1/A, respectively, where  the independent variables at any grid-node from time-step
A = H/L is the aspect ratio of the enclosure. The no- to time-step, are smaller than prescribed values, i.e:6 10
slip boundary conditioV =V = 0 is then imposed at the  and 107/, respectively. In addition, during each simulation
four walls of the cavity. As initial conditions, the results performed, the dynamic behavior of the system analysed is
obtained at a given Rayleigh number are successively usedollowed by plotting the phase trajectoriesaft/, andV, at
for computations at higher or lower Rayleigh numbers, some fixed grid locations, i.e., by plotting the distributions
as clarified in the next section of the paper. Additional of the time derivatives of the primitive variables versus the
simulations are also performed with the following initial variables themselves with time as parameter, whose attractor
conditions: may be represented by either a fixed point, or a limit cycle,
or a torus, or a so-called strange attractor, according to
(a) fluid at rest and conductive linear temperature distribu- whether a stationary, or an oscillatory, or a quasi-periodic,
tion; or a chaotic solution, respectively, is reached.
(b) fluid at rest and uniform temperatu#e= —0.5, or6 = As concerns the initial conditions, most of the simulations
0, or6 = +0.5 across the cavity. are performed by progressively increasing or decreasing the
Rayleigh number, as said above. In particular, since the
highly non-linear problems such as this are very sensitive
to the thermal hystory, and the occurrence of hysteresis
phenomena is one of the main interests of the present study,
The system of Eqgs. (4)—(7) with the boundary conditions the sequence of the numerical solutions, i.e., in what steps
stated above is solved through a control-volume formula- the Rayleigh number is increased or decreased between
tion of the finite-difference method. The pressure-velocity successive runs, must be clearly specified. In computations

where Ra = gB(Th — Te)H3/av is the Rayleigh number

3. Computational procedure
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wherein the Rayleigh number is increased, the flow and Tests on the dependence of the results on both grid-size
temperature fields relevant to the critical valRac which and time-step have been performed for all the geometrical
corresponds to the onset of steady-state convection are firstonfigurations investigated, at several Rayleigh numbers.
solved with the assumption that the initial velocity field In particular, the optimal values of mesh spacing and
is null and the initial temperature distribution across the time stepping, i.e., those used for computations, which
cavity is linear between-0.5 and +0.5. These fields are  represent a good compromise between solution accuracy
then employed as the initial condition for the solution of the and computational time required, are assumed as those over
subsequent case with a Rayleigh numRee= Rac + ARa, which further refinements do not produce any noticeable
thus beginning a computational sequence which proceedsmodification in both the predicted flow field and the heat
with a step change\Ra = 10" for Rayleigh numbers in  transfer rates. This means that, at selected sampling physical
the range 10 < Ra < 10"*1. Once the solution at the times, the percent changes of the average Nusselt numbers
largest Rayleigh number investigated, i.ex 20° for A = 2 Nup, andNu. defined above, as well as those of the maximum
and 16 for A > 2, is obtained, the exploration procedure horizontal and vertical velocity components on the two
is reversed, which means that the Rayleigh number is midplanes of the enclosure, must be smaller than prescribed
progressively decreased by the same step chatBasised accuracy values, i.e., 1% and 2—-5%, respectively. Typically,
in the “outward journey”. At any bifurcation occurrence, a the number of nodal points and the time stepping used for
more refined step change in the range between one-tentttomputations lie respectively in the range betweerx488
and one-fourth of the formeARa is employed, so as to  and 47x 252, and in the range betweenftand 5x 1078,
locate the flow-transition with a better accuracy. This same depending on both the aspect ratio and the Rayleigh number
step-refinement is used also to get a better resolution ofof the enclosure investigated. As an example, the«48
the Nu-curves in the proximity of steep gradients and/or discretization grid used for the enclosure with= 2 is
maximum points, when required. depicted in Fig. 1(b).

At each time step, after spatial convergence is attained, Furthermore, in order to validate the numerical code used
the average Nusselt numbeNs, andNu of the bottom and for the present study, the steady-state solutions obtained as

top walls, respectively, are calculated: temporal asymptotic solutions in a square cavity with differ-

U entially heated sidewalls and adiabatic top and bottom walls
OnH 90 for Rayleigh numbers in the range betweer? Hhd 16,
Nup = KL(Th—To) =- / 37 ly—o (8) have been compared with the benchmark results obtained by

h—re 0 B de Vahl Davis through a standard finite-difference method

1/A used to solve the stream function-vorticity formulation of
NU. — OcH / 20 dx ) the governing equations [19]. In particular, the average Nus-
T kL(Th—To) Y ly=1 selt numbers throughout the cavity as well as the maximum

horizontal and vertical velocity components, respectively on
whereQn and Q. are the heat transfer rates at the bottom and the vertical and the horizontal midplane of the enclosure, are
top walls, respectively. The temperature gradients at bothwithin 1% of the benchmark data, as indicated in Table 1,
bottom and top walls are evaluated by assuming a second-Where other reference solutions obtained by other authors
order temperature profile among each wall-node and the next
two interior nodes. The integrals are then approximated by Table 1
the trapezoid rule. Of course, once a steady-state solutionComparison of the thermally-driven square cavity solutions

is reached, the two average Nusselt humbitg and Quantities Benchmark [19] Present work FV [20,21]

Nuc coincide to what we could name the average Nusselt Ra— 103

numberNu of the enclosure. This same coincidence occurs Umax 3.649 3654 3649

at any time interval also when a steady-periodic solution Vmax 3697 3708 3690

is reached. Whenever periodicity occurs, the heat transferNVav 1118 1116 1113
characteristics of the enclosure are expressed through an Ra=10*

average Nusselt number defined as follows: Umax 16.178 16242 16180

Vinax 19617 19714 19629

107 , 1/A Nu, 2.243 2254 2244

A 36 (1) o
Nu=——— dX | dr Ra— 10P
10T Y ly_o

o \b = Umax 34722 35008 34739

107, 1/4 Vinax 68.590 68109 68639

A 360(1) NUay 4519 4506 4521

=— dx | dr (10)

10r Y |y_1 Ra= 100

0 ‘0 Umax 64.630 65226 64836

where 1@ are the last ten periods of oscillation computed "max 219360 221598 220461

P P NUay 8.800 8879 8825

by the solution algorithm.
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through finite-volume methods are also reported (i.e., the re- (a) starting from a single cell which occupies practically
sults by Mahdi and Kinney [20], fodRa = 103, and those by the whole cavity, the flow pattern gets progressively
Hortmann et al. [21], foRa = 10* to 1(F). It seems worth deformed and two secondary cells grow up at the top
noticing that our dimensionless velocity results have been right and bottom left corners of the enclosure;
multiplied by the Prandtl number before being inserted in (b) the top and bottom cells expand along both the horizon-
Table 1, so as to account for the choice of the ratio between  tal and vertical directions, up to reaching the dimensions

kinematic viscosity and characteristic length of the cavity of the former single cell;

as scale factor for the velocity, instead of the ratio between (c) the top and bottom cells of the newly formed three-
thermal diffusivity and characteristic length, used by de Vahl cell structure keep on expanding with a consequent
Davis in Ref. [19]. In addition, also the transient solutions increasing compression of the inner cell, which shrinks
found by Aydin [22] in air-filled square enclosures heated more and more up to vanishing;

from one side and cooled from above at several Rayleigh (d) the two superimposed cells merge up to the formation
numbers have been reproduced with rather good accuracy. ~ Of a two-in-one configuration and, subsequently, of a

monocellular flow structure, specular to the starting
single cell with respect to the vertical midplane of the
enclosure;

(e) during the subsequent half-period, the specular flow pat-
tern evolves according to the same sequence described
above, up to the restoration of the original one-cell flow
structure.

4. Resultsand discussion

Numerical simulations are performed fer=0.71 (airis
the working fluid) and different values of both the Rayleigh
number in the range $0< Ra < 10° and the height-to-

width aspect ratio of the cavity in the range<2A < 6. The time-evolution of the streamlines and isotherms of
A survey of the heat transfer and fluid flow overall results 1o one-to-three-cell oscillatory solution BRa = 2 x 10°

obtained is presented and discussed. Some local results argy 4ocumented in Fig. 3 through six snapshots which span
also reported by means of isotherm and streamline plots, one haf-period of oscillation. The increase in the spatio-

where the contour lines correspond to equispaced values Ofemporal complexity with increasing the Rayleigh number
respectively the dimensionless temperaira the range s then reflected by the time-distributions of the primitive
between—0.5 and+0.5 anq the normalized dimensionless \ 4riables. As an example, the evolutiorset) vs. at, e.g.,
strgam funcF|or1l1/|/|l1/|maX in the range between 0 and 1, y _ 0125 andy = 0.25—denoted a in Fig. 1(b)—is
being ¥ defined as usual throughi = 9¥/dY andV = shown in Fig. 4 for both the direct and the reverse courses of

—ov/ax. investigation. In particular, it may be seen that:
The evolution of the average Nusselt number of the enclo-

sure and that of the flow field structure, for both courses of (5 the frequency of oscillation increases with increasing

the progressivRa-increasing and successiRRa-decreasing, the Rayleigh number;
are reported for the cavity with = 2 in Fig. 2, where re-  (p) as long as the flow-pattern type remains the same,
markable drops and rises on tNe-curves may be noticed at the amplitude of oscillation keeps nearly constant with

subsequent critical Rayleigh numbers, each one correspond-  jncreasing/decreasing the Rayleigh number;

ing to a flow-transition. In partiCUlar, the flow pattern, clas- (C) at the same Ray|e|gh number’ the frequency and the
sified by the number of cells and by the steadiness or period-  amplitude of oscillation of the one-to-three-cell flow

icity of the temporal asymptotic solution, evolves according pattern are respectively lower and higher than those of
to the following three-step sequence: one-cell steagy the two-cell flow pattern.
two-cell steady— two-cell oscillatory— one-to-three-cell
oscillatory. Each bifurcation is then accompanied by a sym-  More details on the distributions of the dimensionless
metry/asymmetry breakdown, as discussed below in details.frequency vs. the Rayleigh number are reported in the
In the one-cell steady-state solution, the flow pattern con- window-panel of Fig. 2. From the analysis of the heat
sists of a single cell, symmetric about the center of the transfer results of Fig. 2, it may be noticed that each flow-
enclosure. In the two-cell steady-state solution, the flow pat- transition may be accompanied or not by a more or less
tern consists of two superimposed, counter-rotating cells, pronounced step change in the Nusselt number, according
symmetric about the horizontal midplane of the enclosure. to whether the flow-transition is sudden, as for the first and
In the two-cell oscillatory solution, each of the two super- the third bifurcations of the flow pattern evolution detailed
imposed roll-cells expands and shrinks alternately, with no above, or gradual, as for the second one. In particular, the
kind of spatial symmetry. Finally, in the one-to-three-cell os- flow-transition from the one-cell steady-state solution to the
cillatory solution, the flow pattern becomes again symmetric two-cell steady-state solution occurs with an abrupt decrease
about the center of the enclosure. Its evolution over one pe-in the Nusselt number. This may easily be explained by con-
riod of oscillation occurs according to the following basic sidering that: (a) in the one-cell solution, heat is transferred
sequence: across the cavity by the jet of hot fluid that, moving upwards
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Fig. 2. Average Nusselt numbers and flow patterns vs. the Rayleigh numbeef@.

L 96 6

Fig. 3. Streamline and isotherm contour plots for one half-period of oscillatica 2, Ra= 2 x 106).

along one of the sidewalls, comes directly in contact with gradual, the second bifurcation of the sequence goes along
the cooled top wall; and (b) in the two-cell solution, heat is with no step change in the average Nusselt number. Finally,
conveyed from the bottom wall to the top wall of the cavity the third flow-transition, i.e., the bifurcation which leads
via the intermediate heat exchange between the horizontalfrom the two-cell oscillatory solution to the one-to-three-cell
fluid streams of the two superimposed rolls, which implies a oscillatory solution, occurs with an abrupt increase in the
smaller effectivess in the overall heat transfer. In contrast, Nusselt number, since the positive effect of the single cell
since as said above the flow-transition from the two-cell discussed above prevails upon the significantly reduced heat
steady-state solution to the two-cell oscillatory solution is transfer effectiveness of the three-cell flow pattern, which, as
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solution to the two-cell steady solution, may be noticed. This o .
dimensionless time

may be ascribed to the increasing skewness of the one-cell
flow pattern which, before the bifurcation, gets more and Fig. 5. Tilting effect on the one-cell and two-cell steady solutions at
more distorted up to the separation into two superimposedRa="6x 10* (A=2).
cells. In fact, asRa approaches the flow-transition value,
the progressive distortion of the one-cell flow pattern cited tilting the enclosure of assigned angjesor assigned time-
above leads to a decrease in the extent of the portion ofintervalsAz,, and successively restoring the original upright
cooled top wall (or heated bottom wall) directly lapped by position. Within the limits of the simulations performed, the
the jet of hot fluid moving upwards (or cold fluid moving dynamic analysis of the propagation of such disturbance
downwards), which causes a decrease in the overall heathroughout space and time leads to conclude that one of
transfer rate. the solution-branches of each hysteresis cycle is represented
The bifurcation sequence which developes along the re-by absolutely stable solutions, i.e., the original solution is
verse course, and the related drops and rises oNufeirve always restored once tilting is removed. In contrast, the
as well, are exactly inverted. Currently, the bifurcations other solution-branch is represented by solutions with a
along the direct and reverse courses of investigation arelesser degree of stability, i.e., either the original solution
shifted, i.e., the critical Rayleigh numbers at which the bi- or the corresponding absolutely stable solution may be
furcations occur along the direct course of investigation are reached once tilting is removed, depending on the intensity
postponed with respect to the corresponding Rayleigh num-of the disturbance introduced, which means on how much
bers of the reverse course of investigation, which reflects the enclosure is tilted with respect to the gravity and/or
the tendency of the system analysed to keep memory of itson how much the duration of such tilting is long. This is
thermal hystory. Hence, more or less pronounced hysteresisllustrated in Fig. 5, where the time-distributions i, at,
phenomena take place, i.e., within more or less wide rangese.g.,Ra = 6 x 10* are reported for several combinationgof
of variability of the Rayleigh number of the enclosure, dou- andArt,, for both the one-cell steady solutigNu = 2.45)
ble solutions are found. and the two-cell steady solutiotNu = 1.70), the latter
Indeed, these double solutions have not the same physicatesulting clearly much less stable than the former (indeed,
stability, as verified through a series of tests carried out by since only very short tilting-times allow the two-cell system
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Fig. 7. Distributions of the Nusselt number vs. the Rayleigh number for the one-cell steady-state solutions.

to recover the original flow configuration, such solution evolves directly to the two-cell oscillatory solution, i.e., in
can actually be denoted as a metastable solution). Thisthe course of th®a-increasing the two-cell steady-state flow
differential degree of stability is also reflected by the fact pattern is not found (in contrast, the presence of this flow
that all the simulations carried out with the initial conditions pattern is observed in the reverse course of investigation);
of fluid at rest and temperature either uniform or varying (b) a further bifurcation, from the one-to-three-cell oscilla-
with a linear distribution across the enclosure led to temporal tory solution to a more regular three-cell oscillatory solution,
asymptotic solutions that lie all on the stable solution-branch is found to occur with an abrupt decrease in the average Nus-
of each hysteresis cycle (see the lower panel of Fig. 2). selt number; and (c) the maximum on tNe-curve before
Same type of results found fot = 2 are substantially  the flow-transition from the one-cell solution to the two-cell
found also for the other aspect ratios investigated. The solution is more accentuated than that observedifer2.
results obtained fod = 3 are reported in Fig. 6. In par- Other details concerning enclosures with> 3 are
ticular, it may be noticed that: (a) within the limits of the omitted for the sake of brevity. However, since the critical
ARa exploratory-steps assumed, the one-cell steady solutionRayleigh number which corresponds to the onset of motion
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increases with increasing the aspect ratio of the cavity, and
the upper limit of the present investigationRa = 10°, the
results relevant to enclosures with> 3 which lie within

this limit, are in many cases substantially limited to one-cell
steady solutions. In this regard, it seems interesting to report
a summary of the heat transfer rate results relevant to the
only absolutely-stable, one-cell steady solutions obtained for
all the aspect ratios investigated, which is plotted in Fig. 7,
where the aspect ratid = 1 is also included. Surprisingly,

it may be noticed that: (a) the end of tiNe-curve of the
enclosure with aspect ratié (corresponding to the critical
Rayleigh number at which the departure from the single-cell
flow pattern occurs) is located at the intersection with the
Nu-curve of the enclosure with aspect ratib + 1); (b) the
maximum of theNu-curve of the enclosure with aspect ratio
A is located at the intersection with thdu-curve of the
enclosure with aspect ratiol + 0.5); (c) in the double-Log
planeNu-Ra, all the Nu-curves have a unique tangent-line,
which is parallel to the straight line of interpolation of the
results obtained for the enclosure with aspect ratie- 1.

In addition, the first critical Rayleigh numbBec at which

the departure from motionless conduction occurs, may be
expressed as a simple function of the aspect tatibrough

the best-fit correlation-equation represented in Fig. 8:
Rac = 900437 (11)

with a standard deviation of data= 0.016 and a maximum
value of the absolute maximum erroe= 0.03.

5. Conclusions

Rayleigh—Bénard convection in air-filled, rectangular en-

closures with adiabatic sidewalls has been studied numer-

ically for height-to-width aspect ratios of the cavity in the

range 2 to 6, by progressively increasing and successively
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detected along the reverBa-decreasing course of investi-
gation. Indeed, for > 3, in the course oRa-increasing the
flow pattern has been found to evolve directly from the one-
cell steady solution to the two-cell oscillatory solution.

Each bifurcation is then accompanied by a symme-
try/asymmetry breakdown. Even more important, each bi-
furcation is accompanied by a more or less pronounced
step-change in the Nusselt number, as well as by a hysteresis
cycle, whose solution-branches are found to be characterized
by a differential degree of stability.

Finally, the Nu-curves for the single-cell steady-state
solutions show some surprising modular peculiarities which,
in our opinion, deserve further investigation.
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