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Rayleigh–Bénard convection in tall rectangular enclosures
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Abstract

Natural convection in air-filled, 2-D rectangular enclosures heated from below and cooled from above is studied numerically u
assumption of adiabatic sidewalls. A computational model based on the SIMPLE-C algorithm is used for solving the mass, mome
energy transfer governing equations. Simulations are performed for different values of the height-to-width aspect ratio of the en
the range 2� A � 6, by progressively increasing and successively decreasing the Rayleigh number in the range 103 � Ra � 2× 106. After
the departure from motionless conduction takes place, the following flow-pattern evolution is detected: one-cell steady→ two-cell steady
→ two-cell periodic→ one-to-three-cell periodic→ three-cell periodic. At each bifurcation, either abrupt or smooth changes in the N
number are found to occur, according to whether the flow-transition is either sudden or more gradual. Hysteresis phenomena oc
documented. The effects of tilting the enclosure upon the stability of the different flow structures are also analysed.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Rayleigh–Bénard convection in confined enclosures
attracted considerable attention due to its practical relev
to many engineering and science applications, and to
theoretical interest as a convenient vehicle for the st
of the dynamic behavior of non-linear systems. In par
ular, much effort has been dedicated to investigate b
flow-instabilities and flow-transitions or bifurcations, i.
changes in the spatio-temporal flow patterns with varyin
control parameter, usually assumed to be the Rayleigh n
ber of the enclosure.

A general well-known result obtained by many resear
ers is that a first bifurcation from motionless conduction
steady-state convection occurs as the Rayleigh number
creased beyond a critical value which depends on the as
ratio of the enclosure (see, e.g., Raithby and Holland [1])
the Rayleigh number is further increased, motion beco
unstable and subsequent flow-transitions lead to an inc
ing spatio-temporal complexity which ultimately results
turbulence. According to a typical bifurcation sequen
steady-state convection becomes at first oscillatory,
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turning into quasi-periodic and eventually chaotic moti
The onset of chaos may then be followed by windows
periodicity, which emphasize the surprisingly complica
dynamic behavior of Rayleigh–Bénard systems. Howe
different routes to chaos and turbulence may be follow
according to the fact that bifurcation sequences are st
function of the thermal hystory of the system and of
step change in the Rayleigh number (see Gollub and Be
[2], Libchaber et al. [3], and Mukutmoni and Yang [4–6
In addition, hysteresis effects were also reported (see,
Leith [7]), thus confirming that the Rayleigh–Bénard pro
lem, due to its non-linearity, is a degenerate problem,
for the same set of governing parameters multiple soluti
each strongly dependent on the initial conditions, are p
sible. Flow-pattern evolutions of the same kind of tho
described above were detected also when the aspect
of the enclosure was assumed as control parameter in
of the Rayleigh number (see Hernandez and Frederick
Detailed surveys of Rayleigh–Bénard convection, as we
reviews on the several studies conducted, are widely a
able in the open literature (see, e.g., Yang [9], Koschmie
[10], Getling [11], and Gelfgat [12]).

Despite the enormous amount of experimental, theo
cal, and numerical studies performed on this topic, it se
worthwhile noticing that most of the work done deals mai
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Nomenclature

A height-to-width aspect ratio of the enclosure,
= H/L

g gravitational acceleration . . . . . . . . . . . . . . m·s−2

H height of the enclosure . . . . . . . . . . . . . . . . . . . . m
h average coefficient of convection . W·m−2·K−1

k thermal conductivity of the fluid . . W·m−1·K−1

L length of the enclosure . . . . . . . . . . . . . . . . . . . . m
Nu average Nusselt number,= hH/k

P dimensionless pressure
p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number,= ν/α

Q heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . W
Ra Rayleigh number based on the height of the

cavity,= gβ(Th − Tc)H
3/αν

T period of oscillation . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 reference temperature . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U dimensionless horizontal velocity component
V dimensionless vertical velocity component
u horizontal velocity component . . . . . . . . . m·s−1

v vertical velocity component . . . . . . . . . . . m·s−1

X dimensionless horizontal coordinate
Y dimensionless vertical coordinate
x horizontal coordinate . . . . . . . . . . . . . . . . . . . . . m
y vertical coordinate . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity of the fluid . . . . . . . . m2·s−1

β coefficient of volumetric thermal expansion of
the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K−1

ν kinematic viscosity of the fluid . . . . . . . . m2·s−1

θ dimensionless temperature
ρ density of the fluid . . . . . . . . . . . . . . . . . . kg·m−3

τ dimensionless time
Ψ dimensionless stream function

Subscripts
av average
c cold, referred to the top wall
h hot, referred to the bottom wall
max maximum value
0 evaluated at the reference temperature
av-
her
t for
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with cavities extensive in the horizontal direction, i.e., c
ities whose height is significantly smaller than the ot
dimensions. In contrast, only few studies were carried ou
aspect ratios close or equal to unity (see Pallares et al.
14]), whilst a considerably smaller attention has been d
cated to tall cavities, i.e., cavities heated from below wh
extend in the vertical direction.

In this framework, aim of the present paper is to carry
a first-approach numerical analysis of the Rayleigh–Bén
convection in tall, two-dimensional enclosures filled w
air. Indeed, the analysis performed here must be intende
a preliminar study of the dynamic behavior of real slen
cavities heated from below, being reasonable to expect
the thermal convection inside tall three-dimensional cavi
may also be dominated by three-dimensional effects, a
the real bottom-heated horizontal enclosures (where, be
the quasi two-dimensional transverse and longitudinal ro
the formation of typically three-dimensional cross-roll a
soft-roll flow structures may occur).

The analysis is conducted under the assumption
laminar flow, for different values of both the height-to-wid
aspect ratio of the enclosure in the range between 2 an
and the Rayleigh number based on the height of the ca
in the range between 103 and 2× 106. Major concern of the
work is to study the evolution of the heat transfer featu
of the enclosure, to document and discuss the bifurcat
that occur as the Rayleigh number is progressively ei
increased or decreased within its range of variability, an
investigate the occurrence of hysteresis phenomena.
,

s

t

s

,

2. Physical and mathematical formulation

An air-filled rectangular enclosure of heightH and
width L is considered. The coordinate system is defined
that thex-axis is horizontal, whilst they-axis is vertical
and pointing upwards in the direction opposite to grav
Constant uniform temperaturesTh andTc (with Th > Tc) are
imposed at the bottom and top walls, respectively. The r
and left sidewalls are assumed adiabatic. The geomet
the enclosure is depicted in Fig. 1(a), where the coordi
system and the thermal state of the boundary walls are
represented.

Fig. 1. Sketch of the geometry, coordinate system and discretization g
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The flow is considered to be two-dimensional and la
nar. The fluid is assumed to be incompressible, with cons
physical properties and negligible viscous dissipation.
buoyancy effects upon momentum transfer are taken into
count through the Boussinesq approximation.

Once the above assumptions are employed in the co
vation equations of mass, momentum, and energy, and
following dimensionless variables are introduced:

X = x

H
, Y = y

H
, τ = t

(H 2/ν)
(1)

U = u

(ν/H)
, V = v

(ν/H)
, P = p + ρ0gy

ρ(ν/H)2
(2)

θ = (T − T0)

(Th − Tc)
with T0 = (Th + Tc)/2 (3)

the following set of governing equations is obtained:

∂U

∂X
+ ∂V

∂Y
= 0 (4)

∂U

∂τ
+U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+
(
∂2U

∂X2 + ∂2U

∂Y 2

)
(5)

∂V

∂τ
+U

∂V

∂X
+ V

∂V

∂Y

= −∂P

∂Y
+
(
∂2V

∂X2
+ ∂2V

∂Y 2

)
+ Ra

Pr
θ (6)

∂θ

∂τ
+U

∂θ

∂X
+ V

∂θ

∂Y
= 1

Pr

(
∂2θ

∂X2
+ ∂2θ

∂Y 2

)
(7)

where Ra = gβ(Th − Tc)H
3/αν is the Rayleigh numbe

based on the height of the enclosure andPr = ν/α is the
Prandtl number, set to 0.71.

The thermal boundary conditions assumed at the w
are: (a)θ = +0.5 at the bottom wall,Y = 0; (b) θ = −0.5
at the top wall,Y = 1; and (c)∂θ/∂X = 0 at the left and
right sidewalls,X = 0 andX = 1/A, respectively, where
A = H/L is the aspect ratio of the enclosure. The n
slip boundary conditionU = V = 0 is then imposed at th
four walls of the cavity. As initial conditions, the resu
obtained at a given Rayleigh number are successively
for computations at higher or lower Rayleigh numbe
as clarified in the next section of the paper. Additio
simulations are also performed with the following init
conditions:

(a) fluid at rest and conductive linear temperature distr
tion;

(b) fluid at rest and uniform temperatureθ = −0.5, or θ =
0, orθ = +0.5 across the cavity.

3. Computational procedure

The system of Eqs. (4)–(7) with the boundary conditio
stated above is solved through a control-volume form
tion of the finite-difference method. The pressure-velo
-

coupling is handled by using the SIMPLE-C algorithm
Van Doormaal and Raithby [15], which is essentially a m
implicit variant of the SIMPLE algorithm by Patankar a
Spalding [16]. The convective fluxes across the surfa
of the control volumes are evaluated by using the pow
law discretization scheme recommended by Patankar
A second-order backward scheme is then used for
stepping. Starting from specified initial values of the
dependent variables, i.e., specified initial temperature
velocity fields, at each time step the discretized govern
equations are solved iteratively through a line-by-line ap
cation of the Thomas algorithm. Under-relaxation is u
to ensure the convergence of the iterative procedure.
tails on the SIMPLE procedure and on the discretiza
of the convective fluxes may be found in Patankar [17]
addition, studies on the comparative performance of dif
ent discretization schemes for the evaluation of the inter
convective fluxes, as well as studies on enhanced varian
the basic SIMPLE algorithm, are referenced and discus
in a general review paper by Patankar [18].

The computational spatial domain is covered with a n
equidistant grid, having a concentration of grid lines near
four walls of the cavity, and a uniform spacing through
the remainder interior of the cavity. Time discretization
chosen uniform. Within each time step, the spatial solu
is considered to be fully converged when the maxim
absolute values of both the mass source and the pe
changes of the independent variables at any grid-node
iteration to iteration are smaller than prescribed values,
10−4 and 10−5, respectively. Time-integration is stopp
once an asymptotic solution, either stationary or perio
is reached. This means that the simulation procedur
halted when the percent difference between the incom
and outgoing heat transfer rates at the bottom and top w
as well as the percent changes of the time-derivative
the independent variables at any grid-node from time-
to time-step, are smaller than prescribed values, i.e., 1−6

and 10−7, respectively. In addition, during each simulati
performed, the dynamic behavior of the system analyse
followed by plotting the phase trajectories ofθ , U , andV , at
some fixed grid locations, i.e., by plotting the distributio
of the time derivatives of the primitive variables versus
variables themselves with time as parameter, whose attr
may be represented by either a fixed point, or a limit cy
or a torus, or a so-called strange attractor, accordin
whether a stationary, or an oscillatory, or a quasi-perio
or a chaotic solution, respectively, is reached.

As concerns the initial conditions, most of the simulatio
are performed by progressively increasing or decreasing
Rayleigh number, as said above. In particular, since
highly non-linear problems such as this are very sens
to the thermal hystory, and the occurrence of hyster
phenomena is one of the main interests of the present s
the sequence of the numerical solutions, i.e., in what s
the Rayleigh number is increased or decreased betw
successive runs, must be clearly specified. In computa
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wherein the Rayleigh number is increased, the flow
temperature fields relevant to the critical valueRaC which
corresponds to the onset of steady-state convection are
solved with the assumption that the initial velocity fie
is null and the initial temperature distribution across
cavity is linear between−0.5 and+0.5. These fields are
then employed as the initial condition for the solution of
subsequent case with a Rayleigh numberRa = RaC +"Ra,
thus beginning a computational sequence which proc
with a step change"Ra = 10n for Rayleigh numbers in
the range 10n � Ra � 10n+1. Once the solution at th
largest Rayleigh number investigated, i.e., 2×106 for A = 2
and 106 for A > 2, is obtained, the exploration procedu
is reversed, which means that the Rayleigh numbe
progressively decreased by the same step changes"Ra used
in the “outward journey”. At any bifurcation occurrence
more refined step change in the range between one-
and one-fourth of the former"Ra is employed, so as t
locate the flow-transition with a better accuracy. This sa
step-refinement is used also to get a better resolutio
the Nu-curves in the proximity of steep gradients and
maximum points, when required.

At each time step, after spatial convergence is attai
the average Nusselt numbersNuh andNuc of the bottom and
top walls, respectively, are calculated:

Nuh = QhH

kL(Th − Tc)
= −A

1/A∫
0

∂θ

∂Y

∣∣∣
Y=0

dX (8)

Nuc = QcH

kL(Th − Tc)
= A

1/A∫
0

∂θ

∂Y

∣∣∣
Y=1

dX (9)

whereQh andQc are the heat transfer rates at the bottom
top walls, respectively. The temperature gradients at b
bottom and top walls are evaluated by assuming a sec
order temperature profile among each wall-node and the
two interior nodes. The integrals are then approximated
the trapezoid rule. Of course, once a steady-state solu
is reached, the two average Nusselt numbersNuh and
Nuc coincide to what we could name the average Nus
numberNu of the enclosure. This same coincidence occ
at any time interval also when a steady-periodic solu
is reached. Whenever periodicity occurs, the heat tran
characteristics of the enclosure are expressed throug
average Nusselt number defined as follows:

Nu = − A

10T

10T∫
0

( 1/A∫
0

∂θ(τ )

∂Y

∣∣∣∣
Y=0

dX

)
dτ

= A

10T

10T∫
0

( 1/A∫
0

∂θ(τ )

∂Y

∣∣∣∣
Y=1

dX

)
dτ (10)

where 10T are the last ten periods of oscillation compu
by the solution algorithm.
t

-
t

Tests on the dependence of the results on both grid
and time-step have been performed for all the geomet
configurations investigated, at several Rayleigh numb
In particular, the optimal values of mesh spacing a
time stepping, i.e., those used for computations, wh
represent a good compromise between solution accu
and computational time required, are assumed as those
which further refinements do not produce any noticea
modification in both the predicted flow field and the h
transfer rates. This means that, at selected sampling phy
times, the percent changes of the average Nusselt num
Nuh andNuc defined above, as well as those of the maxim
horizontal and vertical velocity components on the t
midplanes of the enclosure, must be smaller than presc
accuracy values, i.e., 1% and 2–5%, respectively. Typic
the number of nodal points and the time stepping used
computations lie respectively in the range between 47× 88
and 47× 252, and in the range between 10−4 and 5× 10−6,
depending on both the aspect ratio and the Rayleigh num
of the enclosure investigated. As an example, the 47× 88
discretization grid used for the enclosure withA = 2 is
depicted in Fig. 1(b).

Furthermore, in order to validate the numerical code u
for the present study, the steady-state solutions obtaine
temporal asymptotic solutions in a square cavity with diff
entially heated sidewalls and adiabatic top and bottom w
for Rayleigh numbers in the range between 103 and 106,
have been compared with the benchmark results obtaine
de Vahl Davis through a standard finite-difference met
used to solve the stream function-vorticity formulation
the governing equations [19]. In particular, the average N
selt numbers throughout the cavity as well as the maxim
horizontal and vertical velocity components, respectively
the vertical and the horizontal midplane of the enclosure
within 1% of the benchmark data, as indicated in Table
where other reference solutions obtained by other aut

Table 1
Comparison of the thermally-driven square cavity solutions

Quantities Benchmark [19] Present work FV [20,21

Ra = 103

Umax 3.649 3.654 3.649
Vmax 3.697 3.708 3.690
Nuav 1.118 1.116 1.113

Ra = 104

Umax 16.178 16.242 16.180
Vmax 19.617 19.714 19.629
Nuav 2.243 2.254 2.244

Ra = 105

Umax 34.722 35.008 34.739
Vmax 68.590 68.109 68.639
Nuav 4.519 4.506 4.521

Ra = 106

Umax 64.630 65.226 64.836
Vmax 219.360 221.598 220.461
Nuav 8.800 8.879 8.825
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through finite-volume methods are also reported (i.e., the
sults by Mahdi and Kinney [20], forRa = 103, and those by
Hortmann et al. [21], forRa = 104 to 106). It seems worth
noticing that our dimensionless velocity results have b
multiplied by the Prandtl number before being inserted
Table 1, so as to account for the choice of the ratio betw
kinematic viscosity and characteristic length of the cav
as scale factor for the velocity, instead of the ratio betw
thermal diffusivity and characteristic length, used by de V
Davis in Ref. [19]. In addition, also the transient solutio
found by Aydin [22] in air-filled square enclosures hea
from one side and cooled from above at several Rayle
numbers have been reproduced with rather good accura

4. Results and discussion

Numerical simulations are performed forPr = 0.71 (air is
the working fluid) and different values of both the Raylei
number in the range 103 � Ra � 106 and the height-to
width aspect ratio of the cavity in the range 2� A � 6.
A survey of the heat transfer and fluid flow overall resu
obtained is presented and discussed. Some local resul
also reported by means of isotherm and streamline p
where the contour lines correspond to equispaced valu
respectively the dimensionless temperatureθ in the range
between−0.5 and+0.5 and the normalized dimensionle
stream function|Ψ |/|Ψ |max in the range between 0 and
being Ψ defined as usual throughU = ∂Ψ/∂Y and V =
−∂Ψ/∂X.

The evolution of the average Nusselt number of the en
sure and that of the flow field structure, for both course
the progressiveRa-increasing and successiveRa-decreasing
are reported for the cavity withA = 2 in Fig. 2, where re-
markable drops and rises on theNu-curves may be noticed a
subsequent critical Rayleigh numbers, each one corresp
ing to a flow-transition. In particular, the flow pattern, cla
sified by the number of cells and by the steadiness or pe
icity of the temporal asymptotic solution, evolves accord
to the following three-step sequence: one-cell steady→
two-cell steady→ two-cell oscillatory→ one-to-three-cel
oscillatory. Each bifurcation is then accompanied by a s
metry/asymmetry breakdown, as discussed below in det

In the one-cell steady-state solution, the flow pattern c
sists of a single cell, symmetric about the center of
enclosure. In the two-cell steady-state solution, the flow
tern consists of two superimposed, counter-rotating c
symmetric about the horizontal midplane of the enclos
In the two-cell oscillatory solution, each of the two sup
imposed roll-cells expands and shrinks alternately, with
kind of spatial symmetry. Finally, in the one-to-three-cell
cillatory solution, the flow pattern becomes again symme
about the center of the enclosure. Its evolution over one
riod of oscillation occurs according to the following bas
sequence:
e

f

-

(a) starting from a single cell which occupies practica
the whole cavity, the flow pattern gets progressiv
deformed and two secondary cells grow up at the
right and bottom left corners of the enclosure;

(b) the top and bottom cells expand along both the horiz
tal and vertical directions, up to reaching the dimensi
of the former single cell;

(c) the top and bottom cells of the newly formed thre
cell structure keep on expanding with a consequ
increasing compression of the inner cell, which shri
more and more up to vanishing;

(d) the two superimposed cells merge up to the forma
of a two-in-one configuration and, subsequently, o
monocellular flow structure, specular to the start
single cell with respect to the vertical midplane of t
enclosure;

(e) during the subsequent half-period, the specular flow
tern evolves according to the same sequence desc
above, up to the restoration of the original one-cell fl
structure.

The time-evolution of the streamlines and isotherms
the one-to-three-cell oscillatory solution atRa = 2 × 106

is documented in Fig. 3 through six snapshots which s
one half-period of oscillation. The increase in the spa
temporal complexity with increasing the Rayleigh num
is then reflected by the time-distributions of the primit
variables. As an example, the evolution ofθ(τ ) vs.τ at, e.g.,
X = 0.125 andY = 0.25—denoted asP in Fig. 1(b)—is
shown in Fig. 4 for both the direct and the reverse course
investigation. In particular, it may be seen that:

(a) the frequency of oscillation increases with increas
the Rayleigh number;

(b) as long as the flow-pattern type remains the sa
the amplitude of oscillation keeps nearly constant w
increasing/decreasing the Rayleigh number;

(c) at the same Rayleigh number, the frequency and
amplitude of oscillation of the one-to-three-cell flo
pattern are respectively lower and higher than thos
the two-cell flow pattern.

More details on the distributions of the dimensionle
frequency vs. the Rayleigh number are reported in
window-panel of Fig. 2. From the analysis of the h
transfer results of Fig. 2, it may be noticed that each flo
transition may be accompanied or not by a more or
pronounced step change in the Nusselt number, accor
to whether the flow-transition is sudden, as for the first
the third bifurcations of the flow pattern evolution detail
above, or gradual, as for the second one. In particular
flow-transition from the one-cell steady-state solution to
two-cell steady-state solution occurs with an abrupt decr
in the Nusselt number. This may easily be explained by c
sidering that: (a) in the one-cell solution, heat is transfe
across the cavity by the jet of hot fluid that, moving upwa
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Fig. 2. Average Nusselt numbers and flow patterns vs. the Rayleigh number forA = 2.

Fig. 3. Streamline and isotherm contour plots for one half-period of oscillation (A = 2, Ra = 2× 106).
ith
t is
ity
nta
s a
ast,
cell

is

long
ally,
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ell
the
cell
heat
, as
along one of the sidewalls, comes directly in contact w
the cooled top wall; and (b) in the two-cell solution, hea
conveyed from the bottom wall to the top wall of the cav
via the intermediate heat exchange between the horizo
fluid streams of the two superimposed rolls, which implie
smaller effectivess in the overall heat transfer. In contr
since as said above the flow-transition from the two-
steady-state solution to the two-cell oscillatory solution
l

gradual, the second bifurcation of the sequence goes a
with no step change in the average Nusselt number. Fin
the third flow-transition, i.e., the bifurcation which lea
from the two-cell oscillatory solution to the one-to-three-c
oscillatory solution, occurs with an abrupt increase in
Nusselt number, since the positive effect of the single
discussed above prevails upon the significantly reduced
transfer effectiveness of the three-cell flow pattern, which
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Fig. 4. Time-distributions ofθ in P at subsequent Rayleigh numbe
(A = 2).

for the two-cell configuration, is due to the intermediate h
transfers occurring between the horizontal airstreams o
three superimposed roll-cells.

In addition, the existence of a maximum on theNu-
curve before the first flow-transition from the one-cell stea
solution to the two-cell steady solution, may be noticed. T
may be ascribed to the increasing skewness of the one
flow pattern which, before the bifurcation, gets more a
more distorted up to the separation into two superimpo
cells. In fact, asRa approaches the flow-transition valu
the progressive distortion of the one-cell flow pattern ci
above leads to a decrease in the extent of the portio
cooled top wall (or heated bottom wall) directly lapped
the jet of hot fluid moving upwards (or cold fluid movin
downwards), which causes a decrease in the overall
transfer rate.

The bifurcation sequence which developes along the
verse course, and the related drops and rises on theNu-curve
as well, are exactly inverted. Currently, the bifurcatio
along the direct and reverse courses of investigation
shifted, i.e., the critical Rayleigh numbers at which the
furcations occur along the direct course of investigation
postponed with respect to the corresponding Rayleigh n
bers of the reverse course of investigation, which refle
the tendency of the system analysed to keep memory o
thermal hystory. Hence, more or less pronounced hyste
phenomena take place, i.e., within more or less wide ran
of variability of the Rayleigh number of the enclosure, do
ble solutions are found.

Indeed, these double solutions have not the same phy
stability, as verified through a series of tests carried ou
l

t

l

Fig. 5. Tilting effect on the one-cell and two-cell steady solutions
Ra = 6× 104 (A = 2).

tilting the enclosure of assigned anglesγ for assigned time
intervals"τγ , and successively restoring the original uprig
position. Within the limits of the simulations performed, t
dynamic analysis of the propagation of such disturba
throughout space and time leads to conclude that on
the solution-branches of each hysteresis cycle is represe
by absolutely stable solutions, i.e., the original solution
always restored once tilting is removed. In contrast,
other solution-branch is represented by solutions wit
lesser degree of stability, i.e., either the original solut
or the corresponding absolutely stable solution may
reached once tilting is removed, depending on the inten
of the disturbance introduced, which means on how m
the enclosure is tilted with respect to the gravity and
on how much the duration of such tilting is long. This
illustrated in Fig. 5, where the time-distributions ofNuh at,
e.g.,Ra = 6×104 are reported for several combinations oγ
and"τγ , for both the one-cell steady solution(Nu = 2.45)
and the two-cell steady solution(Nu = 1.70), the latter
resulting clearly much less stable than the former (inde
since only very short tilting-times allow the two-cell syste
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Fig. 6. Average Nusselt numbers and flow patterns vs. the Rayleigh number forA = 3.

Fig. 7. Distributions of the Nusselt number vs. the Rayleigh number for the one-cell steady-state solutions.
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tion
to recover the original flow configuration, such soluti
can actually be denoted as a metastable solution).
differential degree of stability is also reflected by the f
that all the simulations carried out with the initial conditio
of fluid at rest and temperature either uniform or vary
with a linear distribution across the enclosure led to temp
asymptotic solutions that lie all on the stable solution-bra
of each hysteresis cycle (see the lower panel of Fig. 2).

Same type of results found forA = 2 are substantially
found also for the other aspect ratios investigated.
results obtained forA = 3 are reported in Fig. 6. In pa
ticular, it may be noticed that: (a) within the limits of th
"Ra exploratory-steps assumed, the one-cell steady solu
evolves directly to the two-cell oscillatory solution, i.e.,
the course of theRa-increasing the two-cell steady-state flo
pattern is not found (in contrast, the presence of this fl
pattern is observed in the reverse course of investigat
(b) a further bifurcation, from the one-to-three-cell oscil
tory solution to a more regular three-cell oscillatory soluti
is found to occur with an abrupt decrease in the average
selt number; and (c) the maximum on theNu-curve before
the flow-transition from the one-cell solution to the two-c
solution is more accentuated than that observed forA = 2.

Other details concerning enclosures withA > 3 are
omitted for the sake of brevity. However, since the criti
Rayleigh number which corresponds to the onset of mo
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Fig. 8. Distribution ofRaC vs.A and best-fit equation.

increases with increasing the aspect ratio of the cavity,
the upper limit of the present investigation isRa = 106, the
results relevant to enclosures withA > 3 which lie within
this limit, are in many cases substantially limited to one-
steady solutions. In this regard, it seems interesting to re
a summary of the heat transfer rate results relevant to
only absolutely-stable, one-cell steady solutions obtained
all the aspect ratios investigated, which is plotted in Fig
where the aspect ratioA = 1 is also included. Surprisingly
it may be noticed that: (a) the end of theNu-curve of the
enclosure with aspect ratioA (corresponding to the critica
Rayleigh number at which the departure from the single-
flow pattern occurs) is located at the intersection with
Nu-curve of the enclosure with aspect ratio(A+ 1); (b) the
maximum of theNu-curve of the enclosure with aspect ra
A is located at the intersection with theNu-curve of the
enclosure with aspect ratio(A+ 0.5); (c) in the double-Log
planeNu–Ra, all theNu-curves have a unique tangent-lin
which is parallel to the straight line of interpolation of t
results obtained for the enclosure with aspect ratioA = 1.
In addition, the first critical Rayleigh numberRaC at which
the departure from motionless conduction occurs, may
expressed as a simple function of the aspect ratioA through
the best-fit correlation-equation represented in Fig. 8:

RaC = 900A3.7 (11)

with a standard deviation of dataσ = 0.016 and a maximum
value of the absolute maximum errorε = 0.03.

5. Conclusions

Rayleigh–Bénard convection in air-filled, rectangular
closures with adiabatic sidewalls has been studied nu
ically for height-to-width aspect ratios of the cavity in t
range 2 to 6, by progressively increasing and success
decreasing the Rayleigh number based on the height o
cavity in the range 103 to 2× 106.

In particular, asRa is increased through a step-by-st
procedure, the flow pattern evolves according to the foll
ing general sequence: one-cell steady→ two-cell steady→
two-cell periodic→ one-to-three-cell periodic→ three-cell
periodic. An exactly inverted bifurcation sequence has b
detected along the reverseRa-decreasing course of inves
gation. Indeed, forA� 3, in the course ofRa-increasing the
flow pattern has been found to evolve directly from the o
cell steady solution to the two-cell oscillatory solution.

Each bifurcation is then accompanied by a symm
try/asymmetry breakdown. Even more important, each
furcation is accompanied by a more or less pronoun
step-change in the Nusselt number, as well as by a hyste
cycle, whose solution-branches are found to be characte
by a differential degree of stability.

Finally, the Nu-curves for the single-cell steady-sta
solutions show some surprising modular peculiarities wh
in our opinion, deserve further investigation.
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